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(SMART) Reliability Engineering
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The Big KID
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Big Knowledge(ID)
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Big (K)Information(D)
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Big (KI)Data
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Application

Can the Big KID become SMART for 

Reliability Engineering ?
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SMART Reliability Engineering – component

Big KID opportunities

Reliability analysis for Design for Reliability:

From failure modeling to degradation-to-failure modeling
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SMART Reliability Engineering – component

Big KID opportunities

Reliability analysis for Design for Reliability:

From failure modeling to degradation-to-failure modeling

Integrating physics-of-failure knowledge in reliability models 

• Multi-State Physic-Based Models
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ModelKID
(Knowledge, Information, Data)
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Reliability ?

SMART Reliability Engineering – component

Challenges
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Multi-state physics model of crack development 

in Alloy 82/182 dissimilar metal weld

Alloy 82/182 dissimilar metal weld of piping in a PWR primary coolant system

Physical laws

21SMART Reliability Engineering – component

Multi-State Physic-Based Models
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Internal leak

Failure state

3 2 1 0
λ32 λ21 λ10

Initial state

22SMART Reliability Engineering – component

Opportunities

Degradation
process

Random
shock process

Random shocks

Dependences in degradation processes
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23SMART Reliability Engineering – component

Opportunities

Maintenance

Preventive maintenance (a)

Corrective maintenance (b)

Degradation
process

a

b



24

24SMART Reliability Engineering – component

Challenges

Uncertainty

Internal leak

Failure state

3 2 1 0
λ32 λ21 λ10

Initial state

Uncertain parameters in degradation models 
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Internal leak

Failure state

3 2 1 0
λ32 λ21 λ10

Initial state

25SMART Reliability Engineering – component

Challenges

Degradation processes

Piecewise-deterministic Markov 

process (PDMP)
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MC Simulation

26

Finite-volume scheme

SMART Reliability Engineering – component

Challenges
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SMART Reliability Engineering – component

Big KID opportunities

Reliability analysis for Design for Reliability:

From failure modeling to degradation-to-failure modeling

Integrating physics-of-failure knowledge in reliability models 

• Multi-State Physic-Based Models

?And the data?
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ADT Procedure
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Acceleration Model: 

Stress VS Time

Performance

distribution
Time

Threshold 

distribution 

Life

distribution

Performance

parameter

Degradation Model: 

Degradation VS Time

Stochastic process or degradation-path:

Wiener process: 𝑌(𝑡) = 𝜎𝐵(𝑡) + 𝑑(𝑆)𝑡

Physical or empirical models:

Arrhenius: 𝑑(𝑆) = 𝐴𝑒−  𝐸𝑎 𝑘𝑆

Theory
Assumptions about how things 

work

Design
A blueprint of the procedure 

Experiment

Trial to test hypothesis

Evaluation
Assessment of the outcome of 

the experiment

Conclusion
Insight about what works, 

gained from analysis

Refinements

General testing procedure 
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y = 4E-06x + 0,0014

R² = 0,9837
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Reliability Prediction:

Parameter estimation:
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Challenges in ADT

Degradation 

trend

Aleatory

uncertainty

Epistemic 

uncertainty

 The whole trend is defined 

(linear, exponential, etc.)

 Inherent randomness

 Probability

 Incomplete knowledge due 

to limited information

 Interval, possibility, etc.

 Traditional methods mainly 

model degradation trend 

and aleatory uncertainty.

 Failing to consider 

epistemic uncertainty may 

cause serious reliability 

evaluation problems.

Challenges:

DBM model Revised model I* Revised model II

𝑌 𝑡 = 𝑑(𝑆)𝑡 + 𝜎𝐵𝐵 𝑡 𝑌 𝑡 =  𝑑(𝑆)𝑡 + 𝜎𝐵𝐵 𝑡𝑌 𝑡 = 𝑑 𝑆 ⋅ 𝑡 + 𝜎𝐵𝐵 𝑡

 𝑑(𝑆) ∼ 𝑁  𝜇, 𝜎2𝑑(𝑆) ∼ 𝑁 𝜇, 𝜎2𝑑 𝑆 ：a definite value

Degradation trend

Aleatory uncertainty 

Degradation trend

Aleatory uncertainty 

Degradation trend

Aleatory uncertainty

Epistemic uncertainty 

𝝈𝑩𝑩 𝒕 𝝈𝑩𝑩 𝒕 & 𝒅(𝑺) 𝝈𝑩𝑩 𝒕 &  𝒅(𝑺)

Stochastic Process – some revised models:
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…

Design for Reliability
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SMART Reliability Engineering – component

Big KID opportunities

Maintenance:

Integrating physics knowledge and data:

• Prognostics and Health Management (PHM)



Prognostics and Health 

Management (PHM)

1950 1980 2000

Corrective 

Maintenance

Planned Periodic 

Maintenance

Condition Based 

Maintenance (CBM)

2016

Predictive 

Maintenance (PrM)

PHM is fostered by advancements in:
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Maintenance

Sensor Algorithm Computation power

Maintenance



PHM for what?

PHM in support to CBM and PrM
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 Increase maintainability, availability, safety,

operating performance and productivity

Reduce downtime, number and severity of failure

and life-time cost

PHM: why? (Industry)



43

Abnormal Condition

MODEL OF 

PLANT BEHAVIOR
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PHM: how? (Fault detection) 
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• Empirical classification methods:

• Support Vector Machines

• K-Nearest Neighbours

• Multilayer Perceptron Neural Networks

• Supervised clustering algorithms

• Ensemble of classifiers

• …

Empirical 
Classifier

C1 = Inner race

C2 = Balls

C3 = Outer race
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• Signal measurements representative of the fault classes: «x1,x2,…xn, class»

PHM: how? (Fault diagnostics)
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Data-

Driven

Model-

Based

• Physics-based 

model of the 

degradation 

process

• Measurement 

equation

• Current degradation 

trajectory

• A threshold of failure

• External/operational

conditions 

Degrading component Similar components

Particle filter

Monte Carlo

Simulation

• Degradation trajectories of 

similar components 

• Life durations of a set of 

similar components

Hidden Semi-Markov

Models

Artificial Neural

Networks

Autoregressive (AR)

models

Similarity-based

methods

Neuro-fuzzy

systems

PHM: how? (Fault prognostics) 

Kalman Filter
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PHM: performance ?

• Accuracy
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• Accuracy

 Fault Detection:

 Low rate of False Alarms

 Low rate of Missing Alarms

False Alarm

Rates

Missing

Alarm

Rates

0.54% 0.98%

Example:

Detection

Model

Normal 

Condition

level

P

…

PHM: performance ? (detection)
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• Accuracy

 Fault diagnostics:

 Low Misclassification rate

C1

C2

C3

Diagnostic

Model

Signals

o = true

 = diagnostic model

Misclassification rate = 2.58%

PHM: performance ? (diagnostics)
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• Accuracy

 Prognostics

PHM: performance ? (prognostics)
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1) Context changing

2) Uncertainty management

3) Fleet

4) Return of Investment

5) Safety

PHM &

SMART Reliability Engineering – component

Challenges (PHM)
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Environment

t
Present time

Context 

Changes

Present time

Context changing: concept
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The detection model should be able to follow the process changes:

• Incremental learning of the new data that gradually becomes available

• No necessity of human intervention for:

• selecting recent normal operation data 

• building the new model

T

P

T

P

New data are coming

T

P

Automatic updating of the model

Context changing (fault detection)

Monitoring components of a (e.g. nuclear power) plant 
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t

Failure threshold

Degradation indicator

Present time

Context changing (fault prognostics)
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Failure threshold

Degradation indicator

Present time

Context changing (prognostics)
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1) Context Changing

2) Uncertainty management

3) Fleet

4) Return Of Investment

5) Safety

PHM &

SMART Reliability Engineering – component

Challenges (PHM)
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Uncertainty management (prognostics)

Sources of uncertainty:

1) noise on the observations (measurements) 

Time

Failure Threshold

Noise on 

degradation

measurement

Seal leakage

tp

True leakage

Leakage measurement
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Sources of uncertainty:

1) noise on the observations (measurements)

2) intrinsic stochasticity of the degradation process

69

Time

Failure Threshold

Seal leakage

tp

Uncertainty management (prognostics)
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Sources of uncertainty:

1) noise on the observations (measurements)

2) intrinsic stochasticity of the degradation process

3) unknown future external/operational conditions

4) Modeling errors, i.e. inaccuracy of the prognostic model used to

perform the prediction

Uncertainty on the RUL prediction ?

Uncertainty management (prognostics)
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1) Context Changing

2) Uncertainty management

3) Fleet

4) Return of Investment

5) Safety

PHM &

SMART Reliability Engineering – component

Challenges (PHM)
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Fleet (fault diagnostics)

• Can we use data from similar industrial plants of the same fleet to 

build diagnostic systems?
Failure of Class 1

Failure of Class 2

Failure of Class 3
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1) Context Changing

2) Uncertainty management

3) Fleet

4) Return of Investment

5) Safety

PHM &

SMART Reliability Engineering – component

Challenges (PHM)
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Return Of Investment (ROI)

• Most frequently used measure to estimate the economic benefit of 
PHM:

𝑅𝑂𝐼 =
𝐶𝑜𝑠𝑡 𝑎𝑣𝑜𝑖𝑑𝑎𝑛𝑐𝑒

𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡
− 1

Cost
avoidance

Cost loss
of 

remaining
useful life

Cost of 
repair

reduction

Cost of 
reduction
in logistics

Cost of 
failures
avoided

Investment
cost

Costs
associated with

product
manufacturing

Development
costs

Cost of 
performing
necessary
analysis

Infrastructure 
costs

Questions:
1- How to reformulate the ROI based on these economic benefits and make the ROI 
framework general?
2- How the performance indicators will affect the ROI ?
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1) Context Changing

2) Uncertainty management

3) Fleet

4) Return of Investment

5) Safety

PHM &

SMART Reliability Engineering – component

Challenges (PHM)
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PHM & safety

Risk       (pi, ci|k)i=1,…,N

PHM

 (pi
∗, ci
∗|k∗ )i=1,…,N*

• Avoided failures thanks to PHM

• Reduction of unnecessary maintenance interventions (< human errors in maintenance)

• …

• Management  of abnormal conditions

• Missing alarms of the fault detection system

• Late RUL predictions of the prognostic system

• Unexpected scenarios

• …

+   PHM System

(Terje Aven, ESRA Webinar, 

What is Risk, March 17, 2016)
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PHM & safety

+  + PHM System
Safety?

Initiating

Event
System 1

Detail of an 

Accident
System 2

IE*S1*S2

IE*S1*F2
IE

S1

F1

S2

F2

F1

A B

IE*F1

PHM

System
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Conclusions: Big KID and Smart KID

Fuzzy Logic
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Optimization 

Algorithms

FTA

ETA

FMECA

Hazop

Clustering 

Algorithms

Graph 

Theory

Petri Nets

Neural 

Networks

Bayesian 

Belief 

Networks

Complex Network 

Theory

Monte Carlo

Simulation

Process and 

Stochastic 

Flowgraphs



83

Simulation, Modeling, Analysis, Research 

for Treasuring Knowledge, Information and Data 

(for Reliability Engineering)

SMART KID

Data

Information

Knowledge

Conclusions: Smart KID for Reliability Engineering
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Conclusions: Smart KID for Reliability Engineering

E. Zio, IEEE Trans on Reliability, 2016

Some challenges and opportunities in reliability engineering
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…for your outstanding contributions
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…for your attention


